Glial cells missing: A binary switch between neuronal and glial determination in drosophila

نویسندگان

  • Toshihiko Hosoya
  • Kazunaga Takizawa
  • Koushi Nitta
  • Yoshiki Hotta
چکیده

In the Drosophila CNS, both neurons and glial are derived from neuroblasts. We have identified a gene, glial cells missing (gcm), that encodes a novel nuclear protein expressed transiently in early glial cells. Its mutation causes presumptive glial cells to differentiate into neurons, whereas its ectopic expression forces virtually all CNS cells to become glial cells. Thus, gcm functions as a binary switch that turns on glial fate while inhibiting default neuronal fate of the neuroblasts and their progeny. Similar results are also obtained in the PNS. Analyses of the mutant revealed that "pioneer neurons" can find correct pathways without glial cells and that neurons and glia have a common molecular basis for individual identity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors.

In Drosophila, cell-fate determination of all neuroectoderm-derived glial cells depends on the transcription factor Glial cells missing (GCM), which serves as a binary switch between the neuronal and glial cell fates. Because the expression of GCM is restricted to the early phase of glial development, other factors must be responsible for the terminal differentiation of glial cells. Expression ...

متن کامل

Transcriptional control of glial and blood cell development in Drosophila: cis-regulatory elements of glial cells missing.

In Drosophila, glial cell differentiation requires the expression of glial cells missing (gcm) in multiple neural cell lineages, where gcm acts as a binary switch for glial vs. neuronal fate. Thus, the primary event controlling gliogenesis in neural progenitors is the transcription of gcm. In addition, gcm is also required for the differentiation of macrophages, and is expressed in the hemocyte...

متن کامل

glial cells missing: a genetic switch that controls glial versus neuronal fate

The glial cells missing (gcm) gene in Drosophila encodes a novel nuclear protein that is transiently expressed early in the development of nearly all glia. In loss-of-function gcm mutant alleles, nearly all glia fail to differentiate, and, where we can follow them in the PNS, are transformed into neurons. In gain-if-function gcm conditions using transgenic constructs that drive ectopic gcm expr...

متن کامل

mGCMa is a murine transcription factor that overrides cell fate decisions in Drosophila

During neural development of Drosophila melanogaster, Glial Cells Missing (GCM), functions as a binary switch that promotes glial cell fate while simultaneously inhibiting the neuronal fate. Sequence similarities between GCM and the recently identified mouse protein mGCMa are strictly limited to the aminoterminal DNA-binding domain. Here we show that mGCMa efficiently activates transcription in...

متن کامل

A requirement for Notch in the genesis of a subset of glial cells in the Drosophila embryonic central nervous system which arise through asymmetric divisions.

In the Drosophila central nervous system (CNS) glial cells are known to be generated from glioblasts, which produce exclusively glia or neuroglioblasts that bifurcate to produce both neuronal and glial sublineages. We show that the genesis of a subset of glial cells, the subperineurial glia (SPGs), involves a new mechanism and requires Notch. We demonstrate that the SPGs share direct sibling re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 82  شماره 

صفحات  -

تاریخ انتشار 1995